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Kinetics of nucleation controlled formation and condensational growth of disperse particles
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The kinetics of nucleation controlled formation and condensational growth of disperse patrticles is considered
under the assumptions that} only a small amount of condensable substance nucleates and forms the particles
that grow by condensing the rest of the substaficeThe condensation efficiency is a power function of the
particle mass. A nontrivial perturbation theory with respect to the smallness parametdthe mass of
nucleated mattef(the total mass of condensable malttisr developed allowing one to describe the source-
enhanced and freéno sourcg condensation processes in terms of universal functions: the particle-mass
spectrum and the concentration of condensable matter. The theory relies upon a scaling transformation that
removes at all the smallness parameter from the evolution equdiidhe nucleation rate is a power function
of the concentration of condensable matter leaves it in the expression for the nucleation rate where this
parameter defines only a concentration scale of the nucleation prtfoedhe nucleation rates of general
form). The theory is illustrated by the exact analytical solutions of the nucleation-condensation kinetic equa-
tions for three practically important casgs} gas-to-particle conversion in the free-molecular regiitig,
formation and diffusion controlled condensational growth of islands on surfaces(iiBnéormation and
diffusion controlled growth of disperse particles in the continuum regime. The analytical expressions for the
mass spectra of growing particles are found in the case of free condensing particles. The final mass spectra in
free condensing systems display rather unusual behavior: they are either singular at small particle masses or
not, depending on the value of the power exponent in the mass dependence of the condensation rate.
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[. INTRODUCTION whereg is the number of molecules in the particle, andnd
v are constants. In Ref7] it was shown that aty=n/(n
A new phase formation in the first-order phase transitions+ 1), with n being an integer, the condensation stage can be
often goes through a disperse phase state, i.e., the new phasgscribed in terms ofh+1 moments of the particle-mass
appears as disperse particles suspended in a carrier mediugistribution and that all kinetic curves are the universal func-
The processes responsible for the disperse particle formatiagpns of specially defined universal variable playing the role
are:(i) the formation of stable embrii by nucleatidiii) their  of time. The question then immediately comes up: does this
growth by condensation andii) the coagulation aging of niversality hold sometime else? Here we give a positive

thus formed disperse system. answer to this question and propose a renormalization pro-
The formation of a disperse phase by spontaneous n“CI%'edure valid in a general case

ation plays an extremely important role in numerous atmo- Later, in Ref.[9] we showed, that if the nucleation con-

spheric and technological processes. Very diverse manifesta- .
i . ) . ~"verts a small amount of condensable vapor to disperse par-
tions of this process like the formation of aerosol in

atmospheric conditiond—4] or well-managed technological ticles then the coagulation process is well separated in time
processes of nanomaterial production via aerosol or hydrosé'iom the condensagon s’;age and_occurs.much later. We thus
stateg5,6] prevent us from describing this process uniquely:PoStPone the consideration of this very important period of

the complexity of general models makes their predictiondn® development of disperse systems for a future publication.
unreliable and difficult for use. This paper focuses on the nucleation-condensation pro-

However, not only practical needs impell one to study thec€ss. After formulating the basic equations in Sec. Il we
kinetics of disperse phase formation. This process is also ¢fonsider the source-enhanced condensation where a constant

great theoretical interest, for the universality specific toin time source supplies the disperse system with the fresh
phase transitions reveals here itself in full scale. portions of condensable substance. Although this process has
This paper returns the reader to a simple model of thdeen studied in Ref§7—10 it is pertinent to show how to
particle formation growth already studied by [i&-10] in relax the restrictions related to the application of the moment
this very context. The model considers the particle formatiormethod[11,12. Sec. lll demonstrates that the universal de-
by nucleation and their subsequent condensational growth iscription proposed if7] is applicable for the powerlike de-
a spacially uniform gas-vapor mixturéor definiteness gas- pendencies of more general form thgthi"* 1), This result is
to-particle conversion will examplify our further consider- extended in Section IV to the free condensing systénas
ation). The simple power dependence of the condensationaource that are not less important than the source-enhanced

efficiency a(g) on the particle mass is assumed to be ones. We show that for the barrierless nucleatite nucle-
ation rate is a quadratic function of the concentration of con-
a(g9)=ag”, densable mattethe particle-mass spectra can be found ana-

1063-651X/2001/6@&)/0611098)/$20.00 63061109-1 ©2001 The American Physical Society



A. A. LUSHNIKOV AND M. KULMALA PHYSICAL REVIEW E 63061109

lytically, and we use this fact in Sec. V for considering the condensation on the newly born particles whose mass spec-
nucleation-condensation process in three practically importrum is N(g,t) (N(g,t)dg is the number concentration of
tant cases: particles within the mass interv@f,g+dg]). The particle
masses are measured in the units of vapor molecule mass,
(1) The free-molecular formation and growth of aerosolj e g is simply the number of vapor molecules in a particle.
particles (/=2/3) often met in nanoparticle technologies.  The continuity equation
Although the moment consideration is effective in this case,
we use a more general approach. N 4.
(2) The diffusion controlled condensational growth of is- E+ ﬁ—gN=J(g,t) (2
land films[13,14 (y=1/2), 9
e o o b oy 856105 e e evolaon of te patce mass specun
by the moment method in this case. But a little bit moreN(9.t). The rateg of the condensational growth ofgamer
complicated general consideration allows for expressing thé assumed to be
final particle-mass spectrum in terms of a contour integral _
that is then reduced to an ordinary one. g=a(g)C=Cag?, (©)]
Section VI discusses the differences in the behavior of
source-enhanced and free condensing systems. In the sour@ghere O<y<1 and« is a condensation coefficient whose
enhanced systems the evolution of the particle-mass spegalue depends on the details of the condensation process. For
trum never ceases. Its right wing moves to the rigbtvard example[1], y=2/3 anda=ﬂ'l’(2)v-|- for the condensational
bigger massgsand a powerlike singularity forms simulta- growth of aerosol particles in the free molecular regimg (
neously at the left wingsmall massgsn free systems there s the vapor molecule radius amg is its thermal velocity.
exist limiting (final) mass spectra that form &t>o. These The nucleation ratel(g,t) appearing on the right-hand
spectra are either singular at smgllat y>1/2 or remain  sides(rhs) of Egs(1) and(2) has the form
finite otherwise =<1/2).
J(C)=ACEj(CICy8(g—G)=Jg(C)8(g—G), (4
II. BASIC EQUATIONS
whereC, is a characteristic concentration scétecan be, let

sur\rl1vee trc](;?.smer a spacially uniform disperse system and s say, the saturating concentraio8 is the critical embryo

(1) There is a constant in time source of a condensablmaSSA Is a dimensionality carrier, and(x) is Dirac’s delta

vapor (source-enhanced condensajiair the condensable ?un'(l':ﬂgnéoncrete examples considered in this paper use the
vapor presents initially at a given concentratigro source, ) P . ; p. P
free condensation expression for the rate of barrierless nucleation:

(2) The particles are produced from the vapor phase by
nucleation. The nucleation rate is low compared to the
source productivity. It means that nucleation converts only a i i i i ,
small part of the vapor mass to disperse particles. which describes the nucleation via stable dimers. In this case

(3) The newly born particles then grow by condensation A= cross section of the dimer formation times the thermal
i.e., the condensable molecules join to the particle by one€locity of vapor molecules. The use of E@) simplifies
[the process d)+(1)—(g+1)]. The efficiency of the V€Y much the consideration retaining the main features of

growth processcondensationis a power function of the (he nucleation-condensation process.

particle mass with the power exponentg<1. We assume glso that only a_smqll part of vapor converts
The vapor concentratio6(t) changes with time because t© disperse particles by nucleation, i.e.,

of the simultaneous action of three factors: 1 .
(i) the source that adds the condensable molecules with lim f GJgdt<1, (6)

the ratel. M(T) Jo
(i) the nucleation that consumgsmonomers to form an

embryo of the masg, and with M(t) being the total particle mass concentration.
(iii) the condensation of vapor molecules onto the par- Equations(1) and(2) are to be subject to the initial con-

ticles formed by nucleation. ditions that are specified by the situation under consideration.
Hence, the equation faC(t) is formulated as follows:

J,=J=AC? (5)

T—w

IIl. SOURCE-ENHANCED CONDENSATION

dC o0 o
- J ,td—Cf N(g,t)dg. 1 . :
dt fo 9J(g.H)dg-a 0 g"N(g.)dg @ At nonzerol it is reasonable to use the system of units

a=1=1, i.e., all concentrations are measured in the units of
Herel is the productivity of the external source of condens-y/I/« and time in 1{/l a.
able vapor,J(g,t) is the nucleation rate depending on the Inthese nondimensional variables E@sand(2) take the
vapor concentration, and the last term describes the vapdorm
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dc , ,
a—l—mG—Cf g”N(g,t)dg, (7)
IN(g,t) J o
pm C@Q N(g,t)=ujo(g—G), (8)

where,uzAC§/I is the smallness parameter for the source-

enhanced nucleation-condensation process. The ¢ginon
the rhs of Eq.(7) can be ignored £<1) in contrast to the
similar term on the rhs of E(8), because this very term is
responsible for the production of new particles.
Equationq7) and(8) are subject to zero initial conditions:

N(g,00=0, C(0)=0. 9

Now it becomes clear, that there is no way to develop a

straightforward perturbation theory with respect to the small-
ness parametet, because the zero approximation gives the
trivial result: the linear growth o€(t) and no new particles.

The fact that some nontrivial steps are in order was notice
in [7], where a version of the perturbation theory was pro-
posed for the set of equations describing the time evolution
of the moments of the particle mass distribution. Here we

extend this approach to the general case.
Let us rescale the variables and unknown functions:

g:gOy= t:toe, C:COC7 N:NOn' (10)

We choose the scalég, go, Ng, Co from the condition that
Eqs(7) and(8) do not change on rescaling. It is possible to
do putting four conditions on four scalég, gg, Ng, Co:

C
Co_y

CoggHNo: 1,
to

No - M
—=Co, 9§ 1Nozg_O

& (11)

The scales are now readily defined

—(1=7)1(4=27) U2y,

Co=to=n v Qo= wn

NO:/_L(3+7)/(4*27)_ (12)

Rescaled equations take the form:

dc

@21—(1).),& (13)

an d

76" Cay (14)

a(y),

L[
yn—JC—C

wherec.=C./C,. The terms containing the positive powers
of u were ignored in deriving Eq6Ll3) and (14). The mo-
ments¢,(6) are introduced by the equation

$,(6)= J:wn(y,e)dy. (15)
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Continuity equation(14) can be solved independently of
Eqg. (13). To this end we replace the rhs of this equation by
the boundary condition

lim y”n(y,0)=j(c/c,).
y—0

(16)

Hence, we must solve the homogeneous equation

an N J

a6 ¢ ay

with the boundary condition given by E(L6).
Now let us introduce a new variable

y’n=0 (17)

7= foc(mde' (18)
0

that reduces Eq17) to the partial linear first-order differen-
Ctial equation whose solution is readily found by standard

gwethods The result is

1j(x)

v c(x) o0 20

n(y,7)= (19

Here
x=7—(1—y) "y, (20

j(xX)=j(c(x)/cy), and®(x) is the Heaviside step function.
The spectrum is thus stretched frgrns 0 toy=y,ax, Where

Ymax™ [(1—7) 7]1/(1_ 7,

Let us return now to Eq(13) for ¢. Simply replacing the
variable {=7—(1—v) "ly'~ 7 in the integral on the rhs of
Eq. (13) leads to the closed equation for(see alsd8])

(21)

dc ()
o 1(1- ) 1(1— )
cq, = 1-(1-»)" ch( NI e
(22)
and a useful formula for the moments,
(T f y’n(y,7)dy
i(0)
al(1-7y) al(1-7)
~(1-p70 (=g L tas (23

This formula gives especially simple resultseat n(1— y)
(n is a non-negative integerin particular, for the total par-
ticle number concentration we have

o= | 25 1o,

c(2) )
Now it is seen whyy=n/(n+ 1) simplifies the consideration
of the condensation process: at sycthe power ofr— ¢ on
the rhs of Eq(22) is integer, and this equation can be either
reduced to an ordinary differential equation of the order of

(24)
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n+ 1 for c(7) or to a set of equations for the moments. There
are other dependencies of the condensational efficiegy

allowing for reducing the continuity equation to a finite set
of the first-order ordinary differential equations for general-

lim y"n= I(C/C
y—0 C .

(34)

ized momentg$10].
The formula allowing one to findd(r) oncec(r) has

been found from Eq(13), is readily derived by using Eq.

(18) in the differential formd,7=c. The latter immediately

gives
_[7d¢
“”‘Lao'

(25

IV. FREE CONDENSATION

The above theory is readily extended to the case of free
condensatior{there is no source, but the initial vapor con-

centration is not zepo The initial conditions are now
N(g,00=0, C(0)=C;. (26)

The system of units used in this caseds C;=1, i.e., the

concentration€(t) andN(g,t) are measured in the units of

C; and time in 1&C;. Equations(7) and (8) change very
slightly,

ac_ (=
Sr-—c[ ongnag @7)
Nt i
s+ CagNOD=i(C/CI5(g=C). (28

Here u=ACZ/ aC? is the smallness parameter.

Following the route of the preceding section one finds the
equation forC(r) in the form

Ji(cicy

ce 9%

(35

dC 4
(1= )Y (1= —_ayv(1-y
5. =—(1-9) Lw 3

This equation can be solved analytically for the barrierless
nucleation. The substitutioy=C? [see Eq.(5)] to the inte-
grand of Eq.(35) linearizes this equation. Taking then the
Laplace transform and using the convolution theorem yield

pl/(lf )

C = )
(P) pC= NN 4 (1— ) YE=IT[ (1 y)]

(36)

where I'(x) is the Euler gamma function andC(p)
=[,C(7)e P7dr is the Laplace transform @& (7).

Equations(19)—(21) and(23)—(25) hold for free conden-
sation.

V. EXACTLY SOLUBLE MODELS

Below we analyze the cases

(i) y=2/3 (kinetically controlled growth of aerosol par-
ticles[12]),

(i) y=1/2 (diffusion controlled growth of islands on flat
surfaceq13,14)), and

(iii) y=1/3 (diffusion controlled growth of spherical par-

Let us now rescale the variables and unknown functionsticles[1,15,18).

g=0goy, t=tof, N=Npon. (29)

These cases are sufficiently simple and of great practical
importance. They present rare examples where the practical
importance and the possibility of exact analysis are compat-

In contrast to the source-enhanced case the monomer coitle.

centration is not renormalized.

Let us again choose the scales from the condition that Eqs

A. The casey=2/3

(27) and( 28) do not change on rescaling. These conditions

are
93 "Noto=1, 9§ 'to=1, u=0¢No. (30)

Equations(30) express the scales in terms @fas follows:

to:M*(lfv)/(va), gozlujl/(Zﬂ/), NO:#Z/(Z*J’)_
(3D
Now the set of Eq$27) and(28) is replaced with
dc_ CJoc f)y"d 32
Fr On(y, )yrdy, (32)
on +C 7y’ =0 33
20 ay O (33

The latter equation is subject to the boundary condition

Equation(36) gives for y=2/3

3

p

C(p)= .
(P) p*+2/9

(37

The singularities of the Laplace ima@€p) are simple poles
located atp,= (2/9)** exfi(2k+1)=/4], k=0, 1, 2,3. Stan-
dard methods restoi@( 7). The result is
C(7)=coshpg7)cog po7), (38
where po=(18)"Y4 The variabler changes from 0 tar.,
= 7/(2py)~3.235[the first root of the equatio@(7)=0 ].
The pointr,, corresponds té=c where the monomer con-
centration is entirely depleted.
The particle mass distribution found from E49) is

n(y,m) =y 23C(r—3y"?)0(r—-3y). (39

061109-4
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The moments of the order of 0, 1/3, and 2/3 are alsavhere a=2"*3 The first zero of C(r) defines 7.

readily found from Eq923) and (24). Elementary integra-
tions give

1
$o= 352 [COSHPoT)SIN(Po7) + SN Po7) 0L Po 1)
(40)

1
$13=——[sinh(pe7)sin(pe7)], (41)
6po

1 ) .
¢2,3=F[Cosr( Po7)SiN(Po7) — SiNh(po7)cogpo7) ]
0
(42)
The moments of the finalt &~ or r=17,) particle-mass

distribution are

~ L cost) 7| =2.584
(,ZSO(TOO)—Z—pOCOS E =/Z. s

bum)= — r(w) 1.627
Tw)= —SINN = | = 1. ,
1/3 6pg 2

1 T
boral(70) = —3cosr( 5) =1.218. (43

18p;

=2.33063.
The moments can be also restored. Rather simple but te-
dious integrations give

bud 7)= oo —mle e [cogay37)

— /3 sina\37)1}, (48)
2113
do(T)= ?{—e‘zaf+e37[cosa\/§r)+ 3 sinay37)]}.
(49
The final values of the moments are

D1 7) =1.217, po(7,)=1.734, (50

and the final spectrum of particles has the form
Nm(g>=%cm—2fy>®(rm—2fy>, (5

whereC(7) is given by Eq.(47).

C. The casey=1/3

As was shown inf7], the above examples can be reduced
to the solution of a set of ordinary differential equations.

Of central interest is the final spectrum. On substitutingThis trick does not work aty=1/3, and all the difficulties

7= 1., t0 the rhs of Eq(39) yields
a
n(y,»)=y ?* cosf{§—3poyl’3)

. T
X sin(3poy") O ( 5 3poy1’3) . (49

inherent to the general case come up in full.
The Laplace imag€(p) of C(7) is readily found from
Eq. (36

32
p

p%2+ | 6

The functionC(7) is now expressed in terms of a contour

C(p)= (52)

It is not very difficult to check that the spectrum is cor- jniegral as

rectly normalized

M (o) = foy'““ymy,oo)dy:l, (45

i.e., all vapor has condensed on the dispersed particles. He

Ymax= (7/6po) . This restriction comes fro® function on
the rhs of Eq.(44).

B. The casey=1/2
At y=1/2 Eq.(36) gives

p2

p3+1/2°

C(p)= (46)

Again, the singularities o€(p) are the simple poles ai
=218 exp(km/3), k=1, 2, 3. The Laplace inversion of Eq.
(46) is restored by standard methods. The result is

C(7)=1[e 27+ 2% cogay/37)], (47)

eP’dp.

1 (a+ie= 32
f i (53

C(7)=— T S——
(T) 27T| a—iw p5/2+ 77'/\/6
'rl' e integration contour passes on the right of all singularities
of the integrand. The latter has the branch poirp&at0 and
two simple poles ap, ,= (7/6) exp(=i/5) on the sheet of
the complex plang (— w<<argp<w) (see Fig. 1. We cut
the complex plang along the negative part of the real axis
Re(p)<0, Im(p)=0 and deform the integration contour as
shown in Fig. 1. So the integral on the rhs of E§3) be-
comes the sum of two terms
C(n)=Fy(7)+Fy(7), (54)
whereF, andF, are the contributions from the cut and the
poles, respectively. They are

3/2e— PTg p

1 (=p
Sy
1(7) 6mwJo p°+ /6

: (59
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0.4

©

p2 024

VAPOR CONCENTRATION

FIG. 1. The integration contouk in Eq. (51) is transformed to 0.0 : : : :
the contourC going along the cut in the complex plapeand two 0.0 02 0.4 06 0.8 1.0
contours circumventing the poles of the intergrand on the rhs of Eq. Tt
(51) located at the first sheet pfplane[— w/2<arg(p) < w/2]. infinity

Fo(7)=2€?" cogbr), (56)

2.0 b
where a=(7/6)® cos(27/5) and b= (7/6)'® sin(2x/5).
The values ofr, and ¢q(7.) found numerically arer,
=1.918 andepg(7..) =1.346.

1.5

VI. RESULTS AND DISCUSSION 1.0

The theory developed above allows for the universal de-
scription of the kinetics of nucleation-condensation process
in source-enhanced and free systems. This means that the
governing equatiofand thus the kinetic curvgslo not con-
tain any free parameters at all. Strictly speaking, this state- 0.0 . . .
ment is valid only for the powerlike dependencies of nucle- 0 2 4 6
ation rate on the concentration of condensable vapor. For T
arbitrary nucleation rates the nondimensional gray@p-
pears in Eq(14). Still the perturbation theory with respectto ~ FIG. 2. (8 The nondimensional concentration of condensable
the smallness parametgrcan be developed similarly to the Vapor in the case of free condensation as the functions of ratip
case of powerlike nucleation ratgg], and the losses of uni- play_ln_g th(_a role of time. The vapor is seen to deplete entirely during
versality are not huge: the scaly renormalizing the char- @ finite interval of 7. The curves 1-3 correspond ty
acteristic concentration contains the governing parameter =2/3,1/2, 2/3, respectivelyb) In contrast to free condensation the

= same process in the presence of a source of vapor nevefamis
to low powers 1/8, 1/6, and 1/5 foy=2/3, 1/2, and 1/3, 2, y=2/3). Curve 1 for free condensatiory€ 2/3) is shown for

respectively, for s'ource.-enhanced .Condensa.‘tl.o.n' In the Ca%gmparison. The nondimensional variablds introduced by Eq.
of free condensation this scale defines the initial supersatLhS)

rationc,=C./C;.

There are some qualitative differences in the kinetics o
particle formation and growth in source-enhanced and fre
condensing systems. The integrale [;C(t)dt converges
for sourceless systems and diverges in source-enhanced on
The dependencies of nondimensional concentrationsame — _ 3 (curve 3. This is a reflection of the phase transition at
demonstrated in Figs.(@ and Zb). Figure 2a) shows that y=1/2 discussed ifg]
they %re ngt draStfallg dllf}‘grezr/ltgfqltr:reg_fsfystems n :Ee tbhree The difference in the spectral behavior of the final spectra
considered caseg= 1/3, ' . [N€ dIterence in € De- o small masses is related to the fact that the function

havior of free[curve 1 of Fig. Zb)] and source enhanced - . . S
; ) C[7.]=0. On expandingC(7) in the Taylor series in the
[curve 2 of Fig. 2Zb)] systems is clearly seen. The free Con'vicinity of 7= 1, yield

densation ceases at 7., whereas the source-enhanced con-
densation is endless inrepresentation.

The final mass spectra in free systems are shown in Fig.
3(a) for y=2/3, 1/2, and 1/3curves 1-3, respectivelyThe
curves are normalized to unifgee Eq.43)] and presented Equation(57) accounts for the origination of the phase tran-
in the coordinatesC, X=y/Yma=09/dmax [S€€ EQ.(21)].  sition aty=1/2.

0.5

VAPOR CONCENTRATION

f'I'here is a clear difference in their behavior. At 2/3 the
final mass spectrum has the singularity at small masses:
C(g)=g Y3 [curve 1 in Fig. 3a)]. The spectrum is finite at
Eall masses ay=1/2 (curve 2, and it goes to 0 aty

n(y)=C'(7o)(y—1)y' ?7=g~ 2. (57)
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VII. CONCLUSION

We considered the kinetics of nucleation controlled for-
mation and condensational growth of particles in disperse
systems. The disperse particles were assumed to be born
from a volatile vapor in a nucleation process and then to
grow by its condensation.

The main results of this paper can be summarized as fol-
lows:

(1) The process of particle formation growth was
shown to be governed by one small parameter: the ratio
of vapor mass converted to newly born particles to the
total vapor mass spent in particle formation. However,
o oz | o4 os | o8 10 a direct application of the perturbation theory with respect

PARTICLE MASS to this parameter was not possible, and only the rescalings
Egs (100 and (11) for source-enhanced systems, and
3 Eqgs (290 and (30) for free systems saved the situation
b and made it possible to resolve the problem. In contrast to
Ref. [7] the renormalization procedure was applied
to the full equations describing the time evolution of
2 the particle-mass spectra in disperse systems rather than
to the equations for the moments. It was shown that the
final equations either contain no smallness parameter
at all (when the nucleation rate is a power function
of the vapor concentratignor this parameter appears
in the expression for nondimensional nucleation rate and de-
3 fines the length of the nucleation period. Of course, the re-
sults of Ref.[7] are readily obtained from the present con-
sideration.
T T T (2) We showed that for the barrierless nucleatigthe
0.0 0.2 0.4 0.6 0.8 1.0 . . . . .
nucleation rate is a quadratic function of the concentration of
PARTICLE MASS condensable mattethe particle mass spectra can be found

FIG. 3. (@ The nondimensional mass spectra are shown as thanalytically, and we used this fact for considering the free
functions of particle mas@n the units of maximally reachable mass nucleation-condensation process in three practically impor-
X=Y/Ymax=9/0max [S€€ Eq19)—(21)]). The spectrum ay=2/3  tant systems:

(curve 3 has a singularity at small masses. ¢ 1/2 (curve 3 the (i) The free molecular formation and growth of aerosol
spectrum remains finite at small masses, angkal/3 the spectrum  particles(the mean free path of condensable molecules much
goes to O(curve 3. (b) The nondimensional mass spectrumyat gy ceeds the particle sizeften met in nanoparticle technolo-
=2/3 for the source-enhanced condensation. Curves 1-3 corr%ﬂeS (y=2/3).

Sponfi tOTzal’ 3,5, respectively. The maximal mass in this case is (i) Diffusion controlled condensational growth of island
Ymax= (7/3)° [see Eq(21)]. films (y=1/2)

Even more remarkable is the fact that all the mass spectra (jii) Diffusion controlled particle growth¥=1/3).
are singular atr<r7... The explanation is simple: the factor  we found the differences in the behavior of the source-
C(7—(1-y)y'?) remains finite ay=0, and nothing can- enhanced and free condensing systems. In the source-
cels the singularity coming from the factgr” in Eq. (19).  ephanced systems the evolution of the particle mass spec-
For this Very reason the spectra in Source-enhanped SYStRAm never ceases. Its right wing moves rigfatward bigger
ﬁﬁc%lgvnaz(ssg%ma{ﬁe:ss én égltsraczsrg,sr?gwrrfsiﬁeggt?)ghthe masse)sand a powerlike singularity forms simultaneously_ at
the coordinates; x=yly P for y=2/3 and 7=1, 3, 5 t.he. !eft vvmg(small masses In the free systems there exist
(curves 1-3 res,pectivelr.];/alx-lere Yo = (2713)° [sée iEqs I|m|t|n_g (fmgl) mass spectra that form gt oo. Thesg spectra
(19—(21)]. max are either singular at smajl at y>1/2 or remain finite oth-

erwise (y<1/2).

FINAL MASS SPECTRA

MASS SPECTRA

The valuegy=u~ >~ defines the characteristic scale
of the particle mass spectra. Hence, the average mass
of the particles and the width of the mass distribution
are of the same order, which means that the latter is not ACKNOWLEDGMENTS
described by a narrow curve, i.e., the particles formed
in the nucleation controlled condensation process are poly- One of us(A.L.) thanks ISTC for Grant No. 521-98 and
disperse. ESF for a financial support.
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