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Kinetics of nucleation controlled formation and condensational growth of disperse particles

A. A. Lushnikov1 and M. Kulmala2
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The kinetics of nucleation controlled formation and condensational growth of disperse particles is considered
under the assumptions that:~i! only a small amount of condensable substance nucleates and forms the particles
that grow by condensing the rest of the substance.~ii ! The condensation efficiency is a power function of the
particle mass. A nontrivial perturbation theory with respect to the smallness parameterm5 ~the mass of
nucleated matter!/~the total mass of condensable matter! is developed allowing one to describe the source-
enhanced and free~no source! condensation processes in terms of universal functions: the particle-mass
spectrum and the concentration of condensable matter. The theory relies upon a scaling transformation that
removes at all the smallness parameter from the evolution equations~if the nucleation rate is a power function
of the concentration of condensable matter! or leaves it in the expression for the nucleation rate where this
parameter defines only a concentration scale of the nucleation process~for the nucleation rates of general
form!. The theory is illustrated by the exact analytical solutions of the nucleation-condensation kinetic equa-
tions for three practically important cases:~i! gas-to-particle conversion in the free-molecular regime,~ii !
formation and diffusion controlled condensational growth of islands on surfaces, and~iii ! formation and
diffusion controlled growth of disperse particles in the continuum regime. The analytical expressions for the
mass spectra of growing particles are found in the case of free condensing particles. The final mass spectra in
free condensing systems display rather unusual behavior: they are either singular at small particle masses or
not, depending on the value of the power exponent in the mass dependence of the condensation rate.

DOI: 10.1103/PhysRevE.63.061109 PACS number~s!: 64.60.Qb, 68.03.Fg, 05.70.2a
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I. INTRODUCTION

A new phase formation in the first-order phase transitio
often goes through a disperse phase state, i.e., the new p
appears as disperse particles suspended in a carrier me
The processes responsible for the disperse particle forma
are:~i! the formation of stable embrii by nucleation,~ii ! their
growth by condensation and~iii ! the coagulation aging o
thus formed disperse system.

The formation of a disperse phase by spontaneous nu
ation plays an extremely important role in numerous atm
spheric and technological processes. Very diverse manife
tions of this process like the formation of aerosol
atmospheric conditions@1–4# or well-managed technologica
processes of nanomaterial production via aerosol or hydr
states@5,6# prevent us from describing this process unique
the complexity of general models makes their predictio
unreliable and difficult for use.

However, not only practical needs impell one to study
kinetics of disperse phase formation. This process is als
great theoretical interest, for the universality specific
phase transitions reveals here itself in full scale.

This paper returns the reader to a simple model of
particle formation growth already studied by us@7–10# in
this very context. The model considers the particle format
by nucleation and their subsequent condensational growt
a spacially uniform gas-vapor mixture~for definiteness gas
to-particle conversion will examplify our further conside
ation!. The simple power dependence of the condensatio
efficiencya(g) on the particle mass is assumed to be

a~g!5agg,
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whereg is the number of molecules in the particle, anda and
g are constants. In Ref.@7# it was shown that atg5n/(n
11), with n being an integer, the condensation stage can
described in terms ofn11 moments of the particle-mas
distribution and that all kinetic curves are the universal fun
tions of specially defined universal variable playing the ro
of time. The question then immediately comes up: does
universality hold sometime else? Here we give a posit
answer to this question and propose a renormalization
cedure valid in a general case.

Later, in Ref.@9# we showed, that if the nucleation con
verts a small amount of condensable vapor to disperse
ticles then the coagulation process is well separated in t
from the condensation stage and occurs much later. We
postpone the consideration of this very important period
the development of disperse systems for a future publicat

This paper focuses on the nucleation-condensation
cess. After formulating the basic equations in Sec. II
consider the source-enhanced condensation where a con
in time source supplies the disperse system with the fr
portions of condensable substance. Although this process
been studied in Refs.@7–10# it is pertinent to show how to
relax the restrictions related to the application of the mom
method@11,12#. Sec. III demonstrates that the universal d
scription proposed in@7# is applicable for the powerlike de
pendencies of more general form thangn/(n11). This result is
extended in Section IV to the free condensing systems~no
source! that are not less important than the source-enhan
ones. We show that for the barrierless nucleation~the nucle-
ation rate is a quadratic function of the concentration of c
densable matter! the particle-mass spectra can be found a
©2001 The American Physical Society09-1
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A. A. LUSHNIKOV AND M. KULMALA PHYSICAL REVIEW E 63 061109
lytically, and we use this fact in Sec. V for considering t
nucleation-condensation process in three practically imp
tant cases:

~1! The free-molecular formation and growth of aeros
particles (g52/3) often met in nanoparticle technologie
Although the moment consideration is effective in this ca
we use a more general approach.

~2! The diffusion controlled condensational growth of i
land films @13,14# (g51/2),

~3! The diffusion controlled particle growth@15,16# (g
51/3). The solution of the kinetic equations cannot be fou
by the moment method in this case. But a little bit mo
complicated general consideration allows for expressing
final particle-mass spectrum in terms of a contour integ
that is then reduced to an ordinary one.

Section VI discusses the differences in the behavior
source-enhanced and free condensing systems. In the so
enhanced systems the evolution of the particle-mass s
trum never ceases. Its right wing moves to the right~toward
bigger masses! and a powerlike singularity forms simulta
neously at the left wing~small masses!. In free systems there
exist limiting ~final! mass spectra that form att→`. These
spectra are either singular at smallg at g.1/2 or remain
finite otherwise (g<1/2).

II. BASIC EQUATIONS

We consider a spacially uniform disperse system and
sume that:

~1! There is a constant in time source of a condensa
vapor ~source-enhanced condensation! or the condensable
vapor presents initially at a given concentration~no source,
free condensation!.

~2! The particles are produced from the vapor phase
nucleation. The nucleation rate is low compared to
source productivity. It means that nucleation converts on
small part of the vapor mass to disperse particles.

~3! The newly born particles then grow by condensatio
i.e., the condensable molecules join to the particle by
@the process (g)1(1)→(g11)]. The efficiency of the
growth process~condensation! is a power function of the
particle mass with the power exponent 0<g,1.

The vapor concentrationC(t) changes with time becaus
of the simultaneous action of three factors:

~i! the source that adds the condensable molecules
the rateI.

~ii ! the nucleation that consumesg monomers to form an
embryo of the massg, and

~iii ! the condensation of vapor molecules onto the p
ticles formed by nucleation.

Hence, the equation forC(t) is formulated as follows:

dC

dt
5I 2E

0

`

gJ~g,t !dg2aCE
0

`

ggN~g,t !dg. ~1!

Here I is the productivity of the external source of conden
able vapor,J(g,t) is the nucleation rate depending on t
vapor concentration, and the last term describes the va
06110
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condensation on the newly born particles whose mass s
trum is N(g,t) (N(g,t)dg is the number concentration o
particles within the mass interval@g,g1dg#). The particle
masses are measured in the units of vapor molecule m
i.e., g is simply the number of vapor molecules in a partic

The continuity equation

]N

]t
1

]

]g
ġN5J~g,t ! ~2!

describes the time evolution of the particle-mass spect
N(g,t). The rateġ of the condensational growth of ag-mer
is assumed to be

ġ5a~g!C5Cagg, ~3!

where 0<g,1 anda is a condensation coefficient whos
value depends on the details of the condensation process
example@1#, g52/3 anda5pr 0

2vT for the condensationa
growth of aerosol particles in the free molecular regimer 0
is the vapor molecule radius andvT is its thermal velocity!.

The nucleation rateJ(g,t) appearing on the right-han
sides~rhs! of Eqs ~1! and ~2! has the form

J~C!5ACc
2 j ~C/Cc!d~g2G!5JG~C!d~g2G!, ~4!

whereCc is a characteristic concentration scale~it can be, let
us say, the saturating concentration!, G is the critical embryo
mass,A is a dimensionality carrier, andd(x) is Dirac’s delta
function.

The concrete examples considered in this paper use
expression for the rate of barrierless nucleation:

J25J5AC2, ~5!

which describes the nucleation via stable dimers. In this c
A5cross section of the dimer formation times the therm
velocity of vapor molecules. The use of Eq.~6! simplifies
very much the consideration retaining the main features
the nucleation-condensation process.

We assume also that only a small part of vapor conve
to disperse particles by nucleation, i.e.,

lim
T→`

1

M ~T!
E

0

T

GJGdt!1, ~6!

with M (t) being the total particle mass concentration.
Equations~1! and ~2! are to be subject to the initial con

ditions that are specified by the situation under considerat

III. SOURCE-ENHANCED CONDENSATION

At nonzeroI it is reasonable to use the system of un
a5I 51, i.e., all concentrations are measured in the units
AI /a and time in 1/AIa.

In these nondimensional variables Eqs~1! and~2! take the
form
9-2
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KINETICS OF NUCLEATION CONTROLLED FORMATION . . . PHYSICAL REVIEW E63 061109
dC

dt
512m jG2CE ggN~g,t !dg, ~7!

]N~g,t !

]t
1C

]

]g
ggN~g,t !5m j d~g2G!, ~8!

wherem5ACc
2/I is the smallness parameter for the sour

enhanced nucleation-condensation process. The term}m on
the rhs of Eq.~7! can be ignored (m!1) in contrast to the
similar term on the rhs of Eq.~8!, because this very term i
responsible for the production of new particles.

Equations~7! and~8! are subject to zero initial conditions

N~g,0!50, C~0!50. ~9!

Now it becomes clear, that there is no way to develo
straightforward perturbation theory with respect to the sm
ness parameterm, because the zero approximation gives t
trivial result: the linear growth ofC(t) and no new particles
The fact that some nontrivial steps are in order was noti
in @7#, where a version of the perturbation theory was p
posed for the set of equations describing the time evolu
of the moments of the particle mass distribution. Here
extend this approach to the general case.

Let us rescale the variables and unknown functions:

g5g0y, t5t0u, C5C0c, N5N0n. ~10!

We choose the scalest0 , g0 , N0 , C0 from the condition that
Eqs ~7! and ~8! do not change on rescaling. It is possible
do putting four conditions on four scalest0 , g0 , N0 , C0:

C0

t0
51, C0g0

g11N051,

N0

t0
5C0 , g0

g21N05
m

g0
. ~11!

The scales are now readily defined

C05t05m2(12g)/(422g), g05m21/(22g),

N05m (31g)/(422g). ~12!

Rescaled equations take the form:

dc

du
512fgc, ~13!

]n

]u
1c

]

]y
ygn5 j S c

cc
D d~y!, ~14!

wherecc5Cc /C0. The terms containing the positive powe
of m were ignored in deriving Eqs~13! and ~14!. The mo-
mentsfg(u) are introduced by the equation

fg~u!5E
0

`

ygn~y,u!dy. ~15!
06110
-

a
l-
e

d
-
n
e

Continuity equation~14! can be solved independently o
Eq. ~13!. To this end we replace the rhs of this equation
the boundary condition

lim
y→0

ygn~y,u!5 j ~c/cc!. ~16!

Hence, we must solve the homogeneous equation

]n

]u
1c

]

]y
ygn50 ~17!

with the boundary condition given by Eq.~16!.
Now let us introduce a new variable

t5E
0

u

c~u8!du8 ~18!

that reduces Eq.~17! to the partial linear first-order differen
tial equation whose solution is readily found by standa
methods. The result is

n~y,t!5
1

yg

j ~x!

c~x!
Q~x!. ~19!

Here

x5t2~12g!21y12g, ~20!

j (x)5 j „c(x)/cc…, andQ(x) is the Heaviside step function
The spectrum is thus stretched fromy50 to y5ymax, where

ymax5@~12g!t#1/(12g). ~21!

Let us return now to Eq.~13! for c. Simply replacing the
variablez5t2(12g)21y12g in the integral on the rhs o
Eq. ~13! leads to the closed equation forc ~see also@8#!

c
dc

dt
512~12g!g/(12g)cE

0

t

~t2z!g/(12g)
j ~z!

c~z!
dz,

~22!

and a useful formula for the moments,

fs~t!5E
0

`

ysn~y,t!dy

5~12g!s/(12g)E
0

t

~t2z!s/(12g)
j ~z!

c~z!
dz. ~23!

This formula gives especially simple results ats5n(12g)
(n is a non-negative integer!. In particular, for the total par-
ticle number concentration we have

f0~t!5E
0

t j ~z!

c~z!
dz. ~24!

Now it is seen whyg5n/(n11) simplifies the consideration
of the condensation process: at suchg the power oft2z on
the rhs of Eq.~22! is integer, and this equation can be eith
reduced to an ordinary differential equation of the order
9-3
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A. A. LUSHNIKOV AND M. KULMALA PHYSICAL REVIEW E 63 061109
n11 for c(t) or to a set of equations for the moments. The
are other dependencies of the condensational efficiencya(g)
allowing for reducing the continuity equation to a finite s
of the first-order ordinary differential equations for gener
ized moments@10#.

The formula allowing one to findu(t) once c(t) has
been found from Eq.~13!, is readily derived by using Eq
~18! in the differential formdut5c. The latter immediately
gives

u~t!5E
0

t dz

c~z!
. ~25!

IV. FREE CONDENSATION

The above theory is readily extended to the case of
condensation~there is no source, but the initial vapor co
centration is not zero!. The initial conditions are now

N~g,0!50, C~0!5Ci . ~26!

The system of units used in this case isa5Ci51, i.e., the
concentrationsC(t) andN(g,t) are measured in the units o
Ci and time in 1/aCi . Equations~7! and ~8! change very
slightly,

dC

dt
52CE

0

`

ggN~g,t !dg, ~27!

]N~g,t !

]t
1C

]

]g
ggN~g,t !5m j ~C/Cc!d~g2G!. ~28!

Herem5ACc
2/aCi

2 is the smallness parameter.
Let us now rescale the variables and unknown functio

g5g0y, t5t0u, N5N0n. ~29!

In contrast to the source-enhanced case the monomer
centration is not renormalized.

Let us again choose the scales from the condition that
~27! and ~ 28! do not change on rescaling. These conditio
are

g0
g11N0t051, g0

g21t051, m5g0
gN0 . ~30!

Equations~30! express the scales in terms ofm as follows:

t05m2(12g)/(22g), g05m21/(22g), N05m2/(22g).
~31!

Now the set of Eqs~27! and ~28! is replaced with

dC

du
52CE

0

`

n~y,u!ygdy, ~32!

]n

]u
1C

]ygn

]y
50. ~33!

The latter equation is subject to the boundary condition
06110
e
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lim
y→0

ygn5
j ~C/Cc!

C
. ~34!

Following the route of the preceding section one finds
equation forC(t) in the form

dC

dt
52~12g!g/(12g)E

0

t

~t2j!g/(12g)
j ~C~j!/Cc!

C~j!
dj.

~35!

This equation can be solved analytically for the barrierle
nucleation. The substitutionj 5C2 @see Eq.~5!# to the inte-
grand of Eq.~35! linearizes this equation. Taking then th
Laplace transform and using the convolution theorem yie

C~p!5
p1/(12g)

p(22g)/(12g)1~12g!g/(12g)G@1/~12g!#
,

~36!

where G(x) is the Euler gamma function andC(p)
5*0

`C(t)e2ptdt is the Laplace transform ofC(t).
Equations~19!–~21! and ~23!–~25! hold for free conden-

sation.

V. EXACTLY SOLUBLE MODELS

Below we analyze the cases
~i! g52/3 ~kinetically controlled growth of aerosol par

ticles @12#!,
~ii ! g51/2 ~diffusion controlled growth of islands on fla

surfaces@13,14#!, and
~iii ! g51/3 ~diffusion controlled growth of spherical par

ticles @1,15,16#!.
These cases are sufficiently simple and of great pract

importance. They present rare examples where the prac
importance and the possibility of exact analysis are comp
ible.

A. The casegÄ2Õ3

Equation~36! gives forg52/3

C~p!5
p3

p412/9
. ~37!

The singularities of the Laplace imageC(p) are simple poles
located atpk5(2/9)1/4 exp@i(2k11)p/4#, k50, 1, 2, 3. Stan-
dard methods restoreC(t). The result is

C~t!5cosh~p0t!cos~p0t!, ~38!

where p05(18)21/4. The variablet changes from 0 tot`

5p/(2p0)'3.235@the first root of the equationC(t)50 #.
The pointt` corresponds tot5` where the monomer con
centration is entirely depleted.

The particle mass distribution found from Eq.~19! is

n~y,t!5y22/3C~t23y1/3!Q~t23y1/3!. ~39!
9-4
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The moments of the order of 0, 1/3, and 2/3 are a
readily found from Eqs~23! and ~24!. Elementary integra-
tions give

f05
1

2p0
@cosh~p0t!sin~p0t!1sinh~p0t!cos~p0t!#,

~40!

f1/35
1

6p0
2 @sinh~p0t!sin~p0t!#, ~41!

f2/35
1

18p0
3 @cosh~p0t!sin~p0t!2sinh~p0t!cos~p0t!#.

~42!

The moments of the final (t5` or t5t`) particle-mass
distribution are

f0~t`!5
1

2p0
coshS p

2 D52.584,

f1/3~t`!5
1

6p0
2
sinhS p

2 D51.627,

f2/3~t`!5
1

18p0
3
coshS p

2 D51.218. ~43!

Of central interest is the final spectrum. On substitut
t5t` to the rhs of Eq.~39! yields

n~y,`!5y22/3 coshS p

2
23p0y1/3D

3sin~3p0y1/3!QS p

2
23p0y1/3D . ~44!

It is not very difficult to check that the spectrum is co
rectly normalized

M ~`!5E
0

ymax
yn~y,`!dy51, ~45!

i.e., all vapor has condensed on the dispersed particles.
ymax5(p/6p0)3. This restriction comes fromQ function on
the rhs of Eq.~44!.

B. The casegÄ1Õ2

At g51/2 Eq.~36! gives

C~p!5
p2

p311/2
. ~46!

Again, the singularities ofC(p) are the simple poles atpk
5221/3 exp(ikp/3), k51, 2, 3. The Laplace inversion of Eq
~46! is restored by standard methods. The result is

C~t!5 1
3 @e22at12eat cos~aA3t!#, ~47!
06110
o
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re

where a5224/3. The first zero of C(t) defines t`

52.330 63.
The moments can be also restored. Rather simple bu

dious integrations give

f1/2~t!5
1

3321/3
$e22at2eat @cos~aA3t!

2A3 sin~aA3t!#%, ~48!

f0~t!5
21/3

3
$2e22at1eat @cos~aA3t!1A3 sin~aA3t!#%.

~49!

The final values of the moments are

f1/2~t`!51.217, f0~t`!51.734, ~50!

and the final spectrum of particles has the form

N`~g!5
1

Ay
C~t`22Ay!Q~t`22Ay!, ~51!

whereC(t) is given by Eq.~47!.

C. The casegÄ1Õ3

As was shown in@7#, the above examples can be reduc
to the solution of a set of ordinary differential equation
This trick does not work atg51/3, and all the difficulties
inherent to the general case come up in full.

The Laplace imageC(p) of C(t) is readily found from
Eq. ~36!

C~p!5
p3/2

p5/21Ap/6
. ~52!

The functionC(t) is now expressed in terms of a conto
integral as

C~t!5
1

2p i Ea2 i`

a1 i` p3/2

p5/21p/A6
eptdp. ~53!

The integration contour passes on the right of all singulari
of the integrand. The latter has the branch point atp50 and
two simple poles atp1,25(p/6)1/5exp(6ip/5) on the sheet of
the complex planep (2p,argp,p) ~see Fig. 1!. We cut
the complex planep along the negative part of the real ax
Re(p),0, Im(p)50 and deform the integration contour a
shown in Fig. 1. So the integral on the rhs of Eq.~53! be-
comes the sum of two terms

C~t!5F1~t!1F2~t!, ~54!

whereF1 andF2 are the contributions from the cut and th
poles, respectively. They are

F1~t!5
1

A6p
E

0

`p3/2e2ptdp

p51p/6
, ~55!
9-5
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F2~t!5 4
5 eat cos~bt!, ~56!

where a5(p/6)1/5 cos(2p/5) and b5(p/6)1/5 sin(2p/5).
The values oft` and f0(t`) found numerically aret`

51.918 andf0(t`)51.346.

VI. RESULTS AND DISCUSSION

The theory developed above allows for the universal
scription of the kinetics of nucleation-condensation proc
in source-enhanced and free systems. This means tha
governing equation~and thus the kinetic curves! do not con-
tain any free parameters at all. Strictly speaking, this st
ment is valid only for the powerlike dependencies of nuc
ation rate on the concentration of condensable vapor.
arbitrary nucleation rates the nondimensional groupcc ap-
pears in Eq.~14!. Still the perturbation theory with respect t
the smallness parameterm can be developed similarly to th
case of powerlike nucleation rates@7#, and the losses of uni
versality are not huge: the scaleC0 renormalizing the char-
acteristic concentration contains the governing parametem
to low powers 1/8, 1/6, and 1/5 forg52/3, 1/2, and 1/3,
respectively, for source-enhanced condensation. In the
of free condensation this scale defines the initial supers
ration cc5Cc /Ci .

There are some qualitative differences in the kinetics
particle formation and growth in source-enhanced and
condensing systems. The integralt`}*0

`C(t)dt converges
for sourceless systems and diverges in source-enhanced
The dependencies of nondimensional concentrations ont are
demonstrated in Figs. 2~a! and 2~b!. Figure 2~a! shows that
they are not drastically different for free systems in the th
considered casesg51/3, 1/2, 2/3. The difference in the be
havior of free@curve 1 of Fig. 2~b!# and source enhance
@curve 2 of Fig. 2~b!# systems is clearly seen. The free co
densation ceases att5t` whereas the source-enhanced co
densation is endless int representation.

The final mass spectra in free systems are shown in
3~a! for g52/3, 1/2, and 1/3~curves 1–3, respectively!. The
curves are normalized to unity@see Eq.~43!# and presented
in the coordinatesC, x5y/ymax5g/gmax @see Eq. ~21!#.

FIG. 1. The integration contourA in Eq. ~51! is transformed to
the contourC going along the cut in the complex planep and two
contours circumventing the poles of the intergrand on the rhs of
~51! located at the first sheet ofp-plane†2p/2,arg(p),p/2‡.
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There is a clear difference in their behavior. Atg52/3 the
final mass spectrum has the singularity at small mas
C(g)}g21/3 @curve 1 in Fig. 3~a!#. The spectrum is finite a
small masses atg51/2 ~curve 2!, and it goes to 0 atg
51/3 ~curve 3!. This is a reflection of the phase transition
g51/2 discussed in@8#.

The difference in the spectral behavior of the final spec
at small masses is related to the fact that the funct
C@t`#50. On expandingC(t) in the Taylor series in the
vicinity of t5t0 yield

n~y!'C8~t0!~g21!y122g}g122g. ~57!

Equation~57! accounts for the origination of the phase tra
sition atg51/2.

q.

FIG. 2. ~a! The nondimensional concentration of condensa
vapor in the case of free condensation as the functions of ratiot/t0

playing the role of time. The vapor is seen to deplete entirely dur
a finite interval of t. The curves 1–3 correspond tog
52/3, 1/2, 2/3, respectively.~b! In contrast to free condensation th
same process in the presence of a source of vapor never ends~curve
2, g52/3). Curve 1 for free condensation (g52/3) is shown for
comparison. The nondimensional variablet is introduced by Eq.
~18!.
9-6
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Even more remarkable is the fact that all the mass spe
are singular att,t` . The explanation is simple: the facto
C(t2(12g)y12g) remains finite aty50, and nothing can-
cels the singularity coming from the factory2g in Eq. ~19!.
For this very reason the spectra in source-enhanced sys
are always singular:t`5` in this case, and respectively, th
function c(t).0. These spectra are shown in Fig. 3~b! in
the coordinatesc, x5y/ymax for g52/3 and t51, 3, 5
~curves 1–3 respectively!. Here ymax5(2t/3)3 @see Eqs
~19!–~21!#.

The valueg05m21/(22g) defines the characteristic sca
of the particle mass spectra. Hence, the average m
of the particles and the width of the mass distributi
are of the same order, which means that the latter is
described by a narrow curve, i.e., the particles form
in the nucleation controlled condensation process are p
disperse.

FIG. 3. ~a! The nondimensional mass spectra are shown as
functions of particle mass„in the units of maximally reachable mas
x5y/ymax5g/gmax @see Eqs~19!–~21!#…. The spectrum atg52/3
~curve 1! has a singularity at small masses. Atg51/2 ~curve 2! the
spectrum remains finite at small masses, and atg51/3 the spectrum
goes to 0~curve 3!. ~b! The nondimensional mass spectrum atg
52/3 for the source-enhanced condensation. Curves 1–3 c
spond tot51, 3, 5, respectively. The maximal mass in this case
ymax5(t/3)3 @see Eq~21!#.
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VII. CONCLUSION

We considered the kinetics of nucleation controlled fo
mation and condensational growth of particles in dispe
systems. The disperse particles were assumed to be
from a volatile vapor in a nucleation process and then
grow by its condensation.

The main results of this paper can be summarized as
lows:

~1! The process of particle formation growth wa
shown to be governed by one small parameter: the r
of vapor mass converted to newly born particles to
total vapor mass spent in particle formation. Howev
a direct application of the perturbation theory with resp
to this parameter was not possible, and only the rescal
Eqs ~10! and ~11! for source-enhanced systems, a
Eqs ~29! and ~30! for free systems saved the situatio
and made it possible to resolve the problem. In contras
Ref. @7# the renormalization procedure was appli
to the full equations describing the time evolution
the particle-mass spectra in disperse systems rather
to the equations for the moments. It was shown that
final equations either contain no smallness param
at all ~when the nucleation rate is a power functio
of the vapor concentration! or this parameter appear
in the expression for nondimensional nucleation rate and
fines the length of the nucleation period. Of course, the
sults of Ref.@7# are readily obtained from the present co
sideration.

~2! We showed that for the barrierless nucleation~the
nucleation rate is a quadratic function of the concentration
condensable matter! the particle mass spectra can be fou
analytically, and we used this fact for considering the fr
nucleation-condensation process in three practically imp
tant systems:

~i! The free molecular formation and growth of aeros
particles~the mean free path of condensable molecules m
exceeds the particle size! often met in nanoparticle technolo
gies (g52/3).

~ii ! Diffusion controlled condensational growth of islan
films (g51/2).

~iii ! Diffusion controlled particle growth (g51/3).
We found the differences in the behavior of the sour

enhanced and free condensing systems. In the sou
enhanced systems the evolution of the particle mass s
trum never ceases. Its right wing moves right~toward bigger
masses! and a powerlike singularity forms simultaneously
the left wing ~small masses!. In the free systems there exis
limiting ~final! mass spectra that form att→`. These spectra
are either singular at smallg at g.1/2 or remain finite oth-
erwise (g<1/2).
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Tellus, Ser. B50, 449 ~1998!.

@4# R.J. Weber, P.H. McMurry, F.L. Eisele, and D.J. Tanner,
Atmos. Sci.52, 2242~1995!.

@5# F.E. Kruis, H. Fissan, and A. Peled, J. Aerosol Sci.29, 511
~1998!.

@6# Particle Growth in Suspensions, edited by A.L. Smith~Aca-
demic, New York, 1973!.

@7# A.A. Lushnikov and M. Kulmala, Phys. Rev. Lett.81, 5165
~1998!.
06110
.

@8# A.A. Lushnikov and M. Kulmala, Phys. Rev. E52, 1658
~1995!.

@9# A.A. Lushnikov and M. Kulmala, Phys. Rev. E62, 4932
~2000!.

@10# A.A. Lushnikov and M. Kulmala, J. Aerosol Sci.31, 651
~2000!.

@11# S.K. Friedlander, Ann. N.Y. Acad. Sci.404, 354 ~1983!.
@12# S.K. Friedlander,Smoke, Dust and Haze~Wiley, New York,

1977!.
@13# J.A. Blackman and A. Marshall, J. Phys. A27, 725 ~1994!.
@14# J.A. Blackman, Physica A220, 85 ~1995!.
@15# C.F. Clement and M.H. Wood, Proc. R. Soc. London, Ser

368, 521 ~1979!.
@16# N.A. Fuchs,Evaporation and Droplet Growth in Gaseous Me

dia ~Pergamon, London, 1959!.
9-8


